



## DATA SHEET

# ArtemiS SUITE Advanced Analysis Module (Code 5017)

Expansion module for the implementation of sophisticated analyses

## **Overview**

The Advanced Analysis Module provides methods to analyze modulation spectra, tonal signal parts etc.



#### **Features**

Expansion module for the implementation of sophisticated analyses

#### **Filter Pool:**

 Envelope filter for calculating the envelope of a bandpass-filtered input signals

#### **Analysis Pool:**

- Cepstrum
- Cepstrum vs. Time
- Degree of Modulation vs. Time
- Gated DFT (average)
- Gated DFT vs. Time
- · Kurtosis vs. Time
- Level vs. RPM (filtered)
- Level vs. Time (filtered)
- Modulation Frequency vs. Time
- Modulation Spectrum
- Modulation Spectrum vs. Band
- Modulation Spectrum vs. Time
- Spectral analyses with VFR (Variable Frequency Resolution)
  - VFR (average)
  - VFR vs. Time

- Speech Transmission Index 2D
- Sound Power vs. Time
- Sound Power vs. RPM
- Sound Power Spectrum
- Sound Power Spectrum vs. Time
- · Sound Power Spectrum vs. RPM
- Tonality DIN 45681
- Tonality DIN 45681 vs. Time
- Tone to Noise Ratio
- Tone to Noise Ratio vs. Time
- Wavelet
- Weighted Modulation Analysis

#### Wavelet

The wavelet analysis is particularly suited for examining short, transient signals, such as a few cycles of a combustion engine. Transient means that the sound is characterized by rapid, non-periodic changes. The wavelet analysis (as compared to the FFT analysis) is characterized by a high frequency resolution at low frequencies and, at the same time, a high time resolution at high frequencies.

The above example of a door slam sound illustrates the good frequency and time resolution of the Wavelet analysis (right diagram) compared to the FFT analysis, which provides either a good time resolution or a good frequency resolution, but not both.

#### **Modulation Analysis**

The modulation analysis delivers the spectra of the envelopes of partial bands of the analyzed signal. This allows the user to identify amplitude modulations with their frequency, strength and variation over time. While the psychoacoustic parameters roughness and fluctuation strength account for certain modulation frequencies (e.g. frequencies around 5 Hz for the fluctuation strength), the modulation analysis covers a broad frequency range including the ranges for roughness and fluctuation strength

#### Weighted Modulation

The weighted modulation spectrum examines the modulation of stationary sounds (e. g. power supply fan noise) and turns it into a single value as a measure of annoyance. For this purpose, the modulation spectrum of the frequency groups is calculated. Only modulation frequencies between 0 Hz and the configured maximum envelope frequency are taken into account. The result comprises the single value and the modulation spectrum plotted against the signal frequency.

### VFR (Variable Frequency Resolution)

The VFR analysis is based on the FFT analysis, but features a variable frequency resolution, which is better suited for analyzing low-frequency spectral components of a time-domain signal than the FFT. While the FFT delivers a spectral representation with a constant frequency resolution across the entire frequency range covered, the VFR is more similar to human hearing in that it has a higher frequency resolution at low frequencies than at higher ones.

#### **Sound Power Analysis**

Sound power is an acoustical quantity that determines the sound energy of a sound source per unit of time.

With ArtemiS SUITE the sound power can be calculated according to the standards ISO 3741, ISO 3743, ISO 3744, ISO 3745, and ISO 3746.



The modulation depth and the modulation frequency can be detected by using several modulation analysis.



For this low-frequency tonal sound, which hardly changes over time, the averaged VFR analysis (left diagram) is especially well suited. Unlike the averaged FFT analysis (shown in the right diagram), the VFR analysis has a better spectral resolution in the low-frequency range and shows the frequency of the hooting sound with a very narrow peak at 205 Hz.

#### **Speech Transmission Index 2D**

The Speech Transmission Index (STI) is used to measure speech transmission systems.

For the calculation of the Speech Transmission Index (STI) the degrees of modulation of the intensity envelope of signals are determined. The measurement takes into account the frequency range of speech (125 Hz to 8 kHz) as well as the typical modulation frequencies appearing in speech (0.63 Hz to 12.5 Hz).

For the calculation of the Speech Transmission Index of an input signal, ArtemiS SUITE provides the methods STITEL, STIPA und RASTI as well as the standards IEC 60268-16:2003 and IEC 60268-16:2011.

#### Requirements

- ArtemiS SUITE Basic Framework (Code 5000)
- ArtemiS SUITE Basic Analysis Module (Code 5001)

## Scope of Supply

- License file
  - ArtemiS SUITE Advanced Analysis Module (Code 5017)

#### **Technical Data**

Filter Pool

**Envelope** 

Standard Band / Fixed Band / Band Type:

Tracking Band

1/3 Octave / Octave / Critical Bands:

Bands / Full Bandwidth

Row: A/BBand Number: Selectable Frequency [Hz]: Selectable Quality: Selectable Tracking Order: Selectable Envelope Lowpass [Hz]: Selectable Selectable Lock Sampling Rate:

**Analysis Pool** 

Modulation Frequency vs. Time / Modulation Spectrum / Modulation Spectrum vs. Time / Modulation Spectrum vs. Band / Degree of Modulation vs. Time

Band Type: Standard Band / Fixed Band /

Tracking Band

Standard Band: Selectable

1/3 Octave / Octave / Critical Bands:

Bands / Full Bandwidth

Row: A/BBand Number: Selectable Fixed Band: Selectable Frequency [Hz]: Selectable Quality: Selectable Tracking Band: Selectable Tracking Order: Selectable Envelope Lowpass [Hz]: Selectable

16 - 2<sup>23</sup> Samples Spectrum Size:

Window Function: Rectangle / Hanning / Hamming /

Blackman / Bartlet / Kaiser-Bessel 8 - 16 / Flat-top / Gauss 8, 16, 32

Overlap: Selectable Degrees of Modulation: Selectable

Max. Nbr of Time Values: Selectable

Add Tolerance Scheme: Display of tolerance curves with tolerance test of the analysis result

Representation Settings: Individual scaling of the axes in the

analysis result

Cuts: Extracting of 2D curves from the

three dimensional spectrum (Cut Mode: First Abscissa / Second Abscissa / Free selectable cuts)

Weighted Modulation

Metric Parameters: M (number of the major degrees

of modulation to be considered) / X (determination of the weighting of degrees of modulation with the same modulation frequency)

Modulation Frequency

Reduction: No Reduction / 41 Modulation

Modulation Spectrum

Weighting: Frequency weighted / Frequency

and Modulation Frequency

weighted

Modulation Frequency

Weighting: Selection of the cutoff frequencies and the steepnesses of the high-

pass filter / low-pass filter

Envelope Lowpass [Hz]: Selectable Average: Selectable

Specific Prominence / Specific Weighting Analysis:

Loudness

Representation Settings: Individual scaling of the axes in the

analysis result

Cuts: Extracting of 2D curves from the

three dimensional spectrum (Cut Mode: First Abscissa / Second Abscissa / Free selectable cuts)

Wavelet

None /A/B/C/D/G/Wd/Spectral Weighting:

Wk / Wh etc. Weighting

Filter Type: Butterworth / Bessel / Chebyshev

Ripple [dB]: 0.01 dB to 3 dB Filter Order: 2/4/6

Frequency Range [Hz]: Selection of the lower and the up-

per cutoff frequencies

Filter Quality: Selectable

Resolution: Low / Medium / High

Max. Nbr of Time Values: Selectable Cepstrum / Cepstrum vs. Time

28 - 223 Samples Spectrum Size:

Window Function: Rectangle / Hanning / Hamming /

Blackman / Bartlet / Kaiser-Bessel 8 - 16 / Flat-top / Gauss 8, 16, 32

Overlap: Selectable Max. Nbr of Time Values: Selectable Envelope: Selectable

Kurtosis vs. Time

Overlap: Selectable Integration Time [ms]: Selectable

Level vs. Time (filtered) / Level vs. RPM (filtered)

Spectral Weighting: None / A / B / C / D / G / Wd /

Wk / Wh etc. Weighting

Time Weighting: Fast / Slow / Manual / Impulse /

Rectangle

Time Constant [ms]: Selectable Downsampling: Selectable Step Size [rpm, ...]: Selectable

Slope: Auto Detect / Rising / Falling Filter Type: Butterworth / Bessel / Chebyshev

Ripple [dB]: 0.01 dB to 3 dB Filter Order: 1/2/3/4/5/6

Frequency HP [Hz]: Selectable Frequency LP [Hz]: Selectable Gated DFT / Gated DFT vs. Time

Window Function: Rectangle / Hanning / Hamming /

Blackman / Bartlet / Kaiser-Bessel 8 - 16 / Flat-top / Gauss 8, 16, 32

Spectral Weighting: None /A/B/C/D/G/Wd/

Wk / Wh etc. Weighting

Analysis to use: GFT / HSA

**HSA** Resolution

1/2/4/8/16 **Enhancement:** 

**HSA** Iterations: Selectable

Complex: Calculation of a complex spec-

trum

First Used Impulse Trigger:

11.2019 D5017e9 Subject to change Number of Rotations

Selectable per DFT:

Analysis Window

By Time / By Crank Angle (CA) Definition:

Delay by Time [ms] /

Delay by CA [°]: Selectable

Width by Time [ms] /

Width by CA [°]: Selectable

Tonality DIN 45681 / Tonality DIN 45681 vs. Time

28 - 2<sup>23</sup> Samples Spectrum Size: Overlap: Selectable Max. Nbr of Time Values: Selectable Averaging Time [s]:

Tone to Noise Ratio / Tone to Noise Ratio vs. Time

Selectable

212 - 216 Samples Spectrum Size:

Overlap: Selectable Max. Nbr of Time Values: Selectable

Compensate Threshold

Selectable of Hearing: Transformation: DFT / HSA

**HSA** Resolution

Enhancement: Selectable **HSA** Iterations: Selectable User Tolerance File: Selectable

VFR (average) / VFR vs. Time

16 - 2<sup>23</sup> Samples Spectrum Size:

Window Function: Rectangle / Hanning / Hamming / Blackman / Bartlet / Kaiser-Bessel

8 - 16 / Flat-top / Gauss 8, 16, 32

None /A/B/C/D/G/Wd/Spectral Weighting: Wk / Wh etc. Weighting / Equal

Loudness

VFR Bandwidth: Low / Medium / High

Overlap: Selectable PDS Correction: Selectable Max. Nbr of Time Values: Selectable Speech Transmission Index 2D

Method: STIPA / STITEL / RASTI

Standard: IEC 60268-16:2003 / IEC 60268-

Female Voice: Selectable (Method: STIPA)

Reference Channel: Selectable

Sound Power vs. Time / Sound Power vs. RPM / Sound Power Spectrum / Sound Power Spectrum vs. Time /

Sound Power Spectrum vs. RPM

Standard: User defined, ISO 3743, ISO 3744,

ISO 3745, ISO 3546, ISO 3741 (Direct), ISO 3741 (Reference)

Unequal Areas: Number of Areas / Area Size [m<sup>2</sup>]

Selectable Area Size [m<sup>2</sup>]: Frequency Range [Hz]: Selectable

1/n Octave Spectrum / 1/n Octave Spectrum vs. Time /

1/n Octave Spectrum vs. RPM Method: FFT / Filter

Band Resolution: Octave / 3rd Octave / 1/6 - 1/96

Octave

A/BRow:

Spectral Weighting: None /A/B/C/D/GBand Border Frequency: Nominal / Octave / Decade

16 - 2<sup>23</sup> Samples Spectrum Size:

Window Function: Rectangle / Hanning / Hamming /

Blackman / Bartlet / Kaiser-Bessel

8 - 16 / Flat-top / Gauss 8, 16, 32

Overlap: Selectable Step Size [rpm, ...]: Selectable

Slope: Auto Detect / Rising / Falling Filter Order: 4th Order / 6th Order

Time Weighting: Fast / Slow / Manual / Impulse

Time Constant [ms]: Selectable

KO - Atmosphere

Correction [dB]: Barometric Pressure [hPa] / Tempe-

rature [°C]

K1 - Background

Noise Correction: None / Spectrum / Single Value

If Noise ≤ Signal

Apply Correction / Limit Correction - 6 dB:

to 1.3 dB / Set Correction to 0 dB

K2 - Environmental

Correction: Selectable

Volume [m³] / Surface [m²] / Rever-Reverberation Room:

beration or Absorption File

Additional Results: Microphone Spectra / Directivity

/ Surface Spectrum / Microphone Max Difference Spectrum / K1 Correction Spectrum / K2 Correction

Spectrum

**Available for all Analyses** 

Representation Settings: Individual scaling of the axes in the

analysis result

Add Tolerance Scheme: Display of tolerance curves with

tolerance test of the analysis result (not available for the analyses Weighted Modulation, Wavelet,

Sound Power Spectrum)

Cuts: Extracting of 2D curves from the

three dimensional spectrum (Cut Mode: First Abscissa / Second Abscissa / Free selectable cuts

Single Values

Available for all 2D analyses as well as for 3D analyses that have been reduced to two-dimensional curves using cuts.

Only Sinale Values

as Result: Selectable Abscissa Range: Selectable

Options: Average / Sum / Min / Max /

Percentile

Definition of threshold values for whose compliance the

determined single values shall be tested for.

Quantity: Selectable Unit: Selectable

Recast 2D Abscissa

Transforming the abscissa of a two-dimensional data set

versus time or RPM.

Selectable Abscissa Range: Selectable Step Size:

Optional Manual

> Configuration: Interpolation / Aggregation

11.2019 D5017e9

Subject to change