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1 Introduction 
The amount of environmental noise in daily life is increasing. People travel more frequently, traffic gets heavier 
and public places become more crowded. Everyone still expects to be able to use their audio and communication 
devices hassle-free. Smartphones providing near-end speech enhancement, headphones with active noise can-
cellation (ANC) and in-car communication (ICC) systems are the logical remedies, growing in popularity.
However, not every acoustic situation can be easily improved. Speech enhancement algorithms in smartphones 
cannot reduce local background noise. Other linear or non-linear signal processing may further degrade quality 
of transmitted speech.
In headphones, ANC reduces ambient noise including external speech signals. In most cases, this is expected 
and even desired if users do not want to be disturbed. However, certain situations require comprehensibility of 
external speech. Even though some devices provide modes for passing speech-like signals (‘talk-through’), ANC 
often attenuates or processes them as well. This makes conversation with other people difficult. When using the 
device as a headset for telecommunication, processing of ambient noise must not disturb or influence the down-
link speech signal.
In-car communication systems must deal with the multitude of driving noises in the cabin. The continuous en-
hancement of soundproofing helps, but also increases absorption in the cabin and thus attenuates speech levels. 
Additionally, the ever-increasing size of cars expands the distance between occupants, making the issue worse. 
ICC systems facilitate conversation in the car, but only if their communication quality is decent.
In order to benchmark and/or compare systems and devices for their performance in these situations, several es-
tablished speech intelligibility metrics seem to be the obvious way. However, in several studies [1] [2] [3], per-
ceived listening effort proved to be a more suitable measure than speech intelligibility. This application note 
describes a new instrumental method for determining listening effort, which was recently standardized in ETSI 
TS 103 558 [4]. HEAD acoustics implemented this prediction algorithm as the ACQUA Option ABLE - Assess-
ment of Binaural Listening Effort.
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2 Background and Motivation
Speech intelligibility in telecommunication is mainly impacted by two factors: processing during transmission and 
near-end background noise. The near-end speech signal and the noise can be set in relation, which is typically 
described as signal-to-noise ratio (SNR). A low SNR leads to reduced speech intelligibility (SI) and an increased 
listening effort (LE), respectively. However, solely looking at the SNR value neglects several deciding factors 
affecting the perceived speech intelligibility and listening effort. Therefore, a more profound analysis is 
necessary.
SI and LE can be evaluated for all kinds of speech transmission. For telecommunication, typical systems and de-
vices to be tested for near-end SI and/or LE are:
• In-car communication (ICC) systems
• Hands-free devices for conferences and in vehicles
• Smartphones and other smart devices (e.g. smart home)
• Headphones or headsets with active noise cancellation (ANC)

Listening tests are a viable way to assess speech intelligibility or listening effort, but they are costly and time-
consuming. Predictive algorithms based on the same metrics are a much more efficient alternative. However, 
they are useful only if their prediction result reflects reality with acceptable accuracy.

2.1 Speech Intelligibility Prediction Metrics
Several established algorithms to assess speech intelligibility exist, presenting themselves as viable solutions for 
this task. The following sub-chapters outline the SI metrics most commonly used for telecommunication applica-
tions. There are other SI metrics from the academic field which are not in the scope of this document.
All metrics utilize one or more of the following signal types:
• Noise Background noise only
• Clean speech Speech before processing, without background noise
• Processed speech Speech after processing, without background noise
• Degraded speech Speech after processing, with background noise

2.1.1 Articulation Index (AI)
The Articulation Index (AI) is an outdated and basic method to assess intelligibility of speech. The calculation 
method was standardized in ANSI S3.5-1969 [5]. AI is based on averaged spectra of noise and speech, both ide-
alized as stationary signals.
The algorithm processes single-channel, separate spectra of processed speech and noise, which is not always 
available in real measurement setups. Additionally, there is no comparison of the degraded speech with regard 
to the clean speech reference. For modern telecommunication devices, this method provides little information.

2.1.2 Speech Intelligibility Index (SII)
The Speech Intelligibility Index (SII) as standardized in ANSI S3.5-1997 [6] is the successor of the Articulation 
Index. The SII method represents an energy-based comparison of processed speech and noise. It is carried out 
over the two average 1/3-octave spectra of processed speech and the noise-only components. In addition, a sim-
ple masking model identifies how strongly the noise interferes with the speech signal in each spectrum.
Like the Articulation Index, SII requires separated noise and speech components, which are not always available 
in real measurement setups. Additionally, the lack of comparison between clean speech and degraded speech 
signals limits its informative value on intelligibility.

2.1.3 Speech Interference Level (SIL, PSIL)
The Speech Interference Level (SIL) metrics as described in, e.g. [7], solely analyzes the noise component to 
assess how strongly it interferes with speech intelligibility. To do this, the algorithm calculates the arithmetic mean 
of the (unweighted) SPL in octave bands considered to be relevant for intelligibility: 500 Hz, 1 kHz, 2 kHz and 4 
kHz. The spectrum of each band is averaged, thus SIL operates only with stationary signals. 
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The Preferred Speech Interference Level (PSIL) is a speech-centered version of SIL, applying the same algorithm 
to only three octave bands (500 Hz, 1 kHz and 2 kHz). None of the SIL variants is standardized, producing varying 
results across different test setups and implementations. Additionally, they do not involve any speech signal into 
their rating.

2.1.4 Loudness / Roughness / Sharpness
Loudness is a psychoacoustic quantity that maps the human perception of the sound volume of acoustical signal 
to a linear scale. Loudness is based on calculations using signal processing that emulates the properties of hu-
man hearing. Several loudness calculation methods are available, each of which is specified in its own standard 
(e.g. ISO 532-1 [8]).
Depending on the nature of the source signal, each method produces loudness values varying considerably. This 
impedes comparability across different metrics. The appropriate calculation method must therefore be chosen ac-
cording to the type of sound, as well as the objective of the examination. 
Similar to SIL (see 2.1.3), loudness is often used to analyze only the noise component without taking any speech 
signal into account.
In a similar fashion, roughness and sharpness are metrics developed for purposes outside of speech signal analy-
sis in telecommunication. They allow good assessment of the perceived roughness/sharpness of certain sounds, 
but are used only on the noise component of the signal.

2.1.5 STOI
The Short-time Objective Intelligibility (STOI) algorithm [9] [10] overcomes some drawbacks of the Speech Intel-
ligibility Index (SII) method. STOI processes non-stationary signals on a short-time basis. Therefore, it is more 
suitable for speech signals. Also, the prediction algorithm of STOI incorporates degraded speech as well as the 
clean speech, which is desirable for most measurement setups.
STOI includes routines for automatic level adjustment of the reference signal in respect to the degraded signal 
(normalization step) and consideration of noise and distortions (clipping step). The correlation of these pre-pro-
cessed 1/3-octave spectra are evaluated on active short-time frames of about 400 ms.
STOI is an improvement over previous speech intelligibility metrics as it can process real speech instead of av-
eraged static spectra. On the other hand, STOI ignores the absolute and perceived level by automatically normal-
izing the reference signal level to the level of the degraded signal. Additionally, STOI has never left the academic 
R&D stage and therefore does not fulfill demands for standardized testing. Even though the method is widely used 
in the academic field, the usage for commercial purposes is restricted.

2.1.6 STI
The Speech Transmission Index (STI) method is part of many certification measurement procedures. It is stan-
dardized as IEC 60268-16 [11]. STI was originally developed for analyzing room acoustics, for which it works well. 
For non-linearly processed signals, its prediction quality is limited.
Based on an octave-band filter bank representation, modulation frequencies of each band are analyzed. The loss 
of modulation between the reference and the degraded signal is then determined for each octave band between 
0.63 to 12.5 Hz. The final single value is then calculated as the average over time, modulation frequencies and 
octave bands.
STI generally uses modulated noise signals and therefore is not designed to process speech. Several modifica-
tions of this method evaluated the capability to handle real speech signals. All of these approaches originate from 
the domain of audiology, but none of these concepts has gone beyond R&D. Therefore, none has been validated 
and evaluated on e.g. publicly available listening test material.

2.1.7 ABC-MRT
ABC-MRT, the Articulation Band Correlation Modified Rhyme Test, emerged from extensive amounts of listening 
test data. The data originated from codec benchmarking for mission-critical voice transmission (e.g. emergency 
services) performed by 3GPP [12]. The main application of ABC-MRT is intelligibility on the sending side, focusing 
on noise reduction and coding technologies. How well ABC-MRT works for the receiving direction has not been 
adequately substantiated.
ABC-MRT can be seen as an advanced mixture between AI (see 2.1.1) and STOI (see 2.1.5). As a method, it is 
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a two-step process comprising of a prediction algorithm and subsequent analysis. It is important to understand 
that the output score produced by the prediction algorithm is not the final test result. First, it must be analyzed in 
the second step: an algorithm is used to “emulate” a modified rhyme test (MRT) by filling in for a real person. Like 
a real-life MRT, six words/samples are rated. The sample with the highest obtained algorithmic score is then cho-
sen as the correct one. After a certain number of samples per condition, the real spoken words are compared to 
the algorithm’s selections. The obtained ratio is the final score for the condition. 
For adequate prediction performance, it is recommended to use 1,200 samples/words per condition. One condi-
tion equals one specific volume setting with one specific background noise type. Even with short words and no 
pauses, 1,200 words roughly equals 50 minutes of source signal which needs to be measured. With sufficient 
computing power, the result analysis takes another 25 to 50 minutes. Thus, each single condition sums up to more 
than one hour of work.
Using less samples/words is not recommended to ensure reasonable prediction quality. Also, skipping the lengthy 
MRT procedure and simply using the score produced by the algorithm gives false results. Thus, testing according 
to ABC-MRT is at least a very time-consuming process.

2.1.8 PESQ and POLQA
The Perceptual Evaluation of Speech Quality is a method standardized in Recommendation ITU-T P.862 [13]. It 
is commercially available as PESQ. The method is used to predict speech quality, which must be differentiated 
from speech intelligibility and/or listening effort. It is applicable only at electrical interfaces, acoustic paths are in 
general excluded in the scope of ITU-T P.862, e.g. the short loudspeaker-to-ear path recurrent in telecommuni-
cation.
Even though the source code can be downloaded from the ITU-T website, it is not legal to use it without a valid 
license – even for academic purposes. Especially in the academic world, P.862 is often used in the context of 
noise reduction, speech enhancement and intelligibility enhancement in the presence of background noise. How-
ever, the standard explicitly rules out use cases containing any kind of noisy speech by stating that it will provide 
“inaccurate predictions” and therefore is “not intended to be used” for these purposes.
The Perceptual Objective Listening Quality Prediction, commercially available as POLQA, is the successor of 
P.862. In the latest version in force, P.863 [14], it is the first metric discussed in this chapter which is capable of 
audio analysis up to 20 kHz (full-band).
P.863 can only handle conditions with moderate background noise, thus with a high SNR. When SNR is low as 
to be expected in this context, the metric does not produce proper prediction results. Additionally, it fails already 
at slightly reverberant conditions/environments, which is also indicated in the scope of ITU-T P.863. Therefore, it 
generally is not suitable for hands-free scenarios like the ones at hand.
P.862 and P.863 both predict speech quality according to Recommendation ITU-T P.800 [15] with clearly laid-out 
listening test conditions. However, none of them are designed for reliably predicting speech intelligibility.
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2.2 Conclusion on Speech Intelligibility Metrics
Most of the known metrics were developed either for purposes outside of telecommunication or for very specific 
scenarios which differ from near-end SI/LE testing as laid out at the beginning of this chapter. Therefore, they do 
not deliver comprehensive information when used in this context. Additionally, for the majority of metrics there is 
no standardization of measurement setups and listening tests, leading to results that are not comparable across 
different test setups.
None of the existing speech intelligibility metrics can process binaural signals, ignoring the enclosed spatial infor-
mation that influences human hearing and thus speech intelligibility. Thus, binaural recordings made with artificial 
heads cannot be used. A possible workaround would be analyzing one signal at a time and combining the results, 
e.g. by summation or averaging. However, as none of the metrics for speech intelligibility clearly defines such a 
process, results would vary greatly, therefore this is not applicable.
An often overlooked fact is that a speech intelligibility algorithm’s output does not translate directly to listening test 
results on a linear scale. Additionally, results obtained with different metrics are not directly comparable. This is 
understandable as they were originally developed for differing purposes. The Common Intelligibility Scale [16] 
shown in Fig. 1 shows the non-linear nature of various speech intelligibility tests and allows conversion of their 
results. However, if an speech intelligibility metric is used out of its scope, its prediction quality and therefore the 
validity of conversion via the CIS becomes uncertain.

Fig. 1: Common Intelligibility Scale (CIS) for conversion
of various intelligibility test metrics
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2.3 Speech Intelligibility vs. Listening Effort
All perceptive tests of speech intelligibility are based on the participant’s understanding of either singular sylla-
bles, words or whole sentences. At first glance this appears as a good measure for testing intelligibility. However, 
the specific characteristics of human hearing, combined with the desire to score well in tests, leads to improper 
scaling of test results.
Taking the common Modified Rhyme Test (see 2.1.7) as an example, a native speaker tends to get nearly all 
words correct beyond a medium SNR. Below a certain SNR, intelligibility becomes so poor that the same person 
hardly understands anything, thus scoring low. This leads to a compression of the ratio of intelligibility vs. SNR, 
which in turn reduces the informative value of intelligibility testing.
As an alternative, participants can be asked to give their assessment of the listening effort required to understand 
test sentences. By design, there is no aspiration to give the “right” answer. Instead, listening effort asks a person 
for their personal impression and then rate it on an Absolute Category Rating (ACR) scale similar to the well-
known and established speech quality testing according to e.g., ITU-T P.800 [15].
A listening test performed to compare popular speech intelligibility metrics to listening effort produced results 
shown in Fig. 2. The test was conducted to assess the performance of an ICC system [1] while also comparing 
results of common speech intelligibility metrics with listening effort as described above.

Fig. 2: Results of listening tests: MOS-LE vs. SII, STOI and STI respectively

Ideally, any of the speech intelligibility test metrics should have a linear relation to listening effort. While there is 
a general correlation between SI and LE, individual patterns emerge for each method.
The SII generally rates all not perfectly intelligible samples quite low on its scale, leaving a substantial gap of pos-
sible ratings unused. Additionally, various samples were rated with an identical SII value but varying LE values, 
hinting that SII does not differentiate between them where LE does. For example, several speech samples were 
rated with an SII around 0.25 while the MOS-LE ranges from 1.8 to 3.2 for the same samples.
The STOI shows noticeable compression of results. It groups many samples between 0.43 and 0.59 whereas the 
MOS-LE ranges from 1.4 to 3.3 for these samples. This narrow range of results makes interpretation via the STOI 
method difficult, e.g. when experimentally optimizing a speech transmission system.
STI displays a mixture of both behaviors. It shows compression of results similar to SII (but shifted to a higher 
value) while treating numerous speech samples as equal where LE differentiates between them.
In contrast, Listening effort shows a significantly larger spread in its test results, allowing a more precise analysis 
of the device under test (DUT). The increased gradation of results also enables a better evaluation of system im-
provements achieved through fine-tuning. Such small differences would not be noticeable on an SI scale.
The ITU-T Handbook [17] states that the design of listening tests and instrumental prediction method should be 
clearly coordinated with each other. None of the SI metrics achieves that, mostly lacking the description of listen-
ing test design. Various SI tests, mainly in the domain of audiology, are described in literature, but none of them 
currently are standardized. Additionally, necessary items often are not publicly available (e.g. audio sources or 
words/sentences in written form)
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A major advantage of standardization is the definition of languages and speech bodies. As an exception, 
ITU-T P.807 [18] specifies an SI test, but only for American English. Translations are not available, and neither 
are freely available audio samples. Thus, even this well defined speech intelligibility test is usable only in very 
specific scenarios.
To allow meaningful and fully repeatable testing of listening effort with comparable results, in 2019 ETSI STQ 
specified listening test design and the suitable instrumental method in the specification ETSI TS 103 558 [4]. 
HEAD acoustics implemented this prediction algorithm as a software option for the Advanced Communication 
QUality Analysis system ACQUA: ABLE - Assessment of Binaural Listening Effort (ACOPT 37). ABLE is a unique 
method that processes binaural signals and therefore takes the influence of binaural hearing on listening effort 
into account. This allows a much more realistic assessment of human listening perception than the aforemen-
tioned monaural metrics for speech intelligibility.
Despite the outlined advantages of testing listening effort instead of speech intelligibility, ABLE has the advantage 
of speech material being available in different languages. Additionally, ABLE can process speech samples from 
other specifications like e.g. Recommendation ITU-T P.501 [19].

2.4 Auditory (Subjective) Test Databases
When evaluating Listening Effort, subjects provide a self-assessment on a five-point categorical scale similar to 
well-known speech quality testing methods. For evaluation of Listening Effort, the scale according to table 1 is 
used:

Table 1: Overview of evaluation categories for listening effort MOS (MOS-LE)

The scale and the corresponding attributes are taken from ITU-T P.800 [15]. Besides the aforementioned benefits 
of Listening Effort testing, recent studies (e.g. [1]) indicate that speech enhancement benefits can be evaluated 
in a wider range of signal-to-noise ratios (SNRs) without reaching positive or negative saturation observed in in-
telligibility tests. Auditory tests can be conducted in groups in parallel.

Score Listening Effort Speech Quality

5 Complete relaxation possible, no effort required Excellent

4 No appreciable effort required Good

3 Attention necessary, moderate effort required Fair

2 Considerable effort required Poor

1 No meaning understood with any feasible effort Bad
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3 Design of Listening Effort

3.1 The Instrumental Model ABLE
The instrumental model for Listening Effort standardized in ETSI TS 103 558 [4], and thus also its implementation 
as ABLE, describes two closely related operational modes of the algorithm – one with and one without a noise-
only reference. The model below is the version without a noise-only reference, which is used most often as it can 
be applied in any use-case. For the model with a noise-only reference, please see [4]. 
The algorithm consists of different stages. Signals are either depicted as double-arrows with bold designations 
(binaural) or as single-arrows with regular designations (monaural). The different signal designations are:
• r / R for reference signal (clean speech)
• N for noise component
• P for processed signal (processed speech without noise)
• d / D for degraded signal (processed speech with noise)

Fig. 3: Flow chart of prediction algorithm for Listening Effort without noise-only reference
based on the chart in ETSI 103 558

3.1.1 Stages and Signals
ABLE is a binaural model, thus the input ideally are binaurally recorded scenarios. If not available, ABLE can also 
handle monaural signals. d(k) is the binaurally recorded degraded speech signal comprising the left and right 
channel, dl(k) and dr(k), respectively. r(k) is the monaural clean speech signal which is used as a reference.
• The Pre-Processing stage performs temporal and level alignment and calculates the binaural transfer func-

tion H(f) which describes the relation between degraded and reference signals in order to exclude non-cor-
related noise components

• The Hearing Model calculation performs an aurally adequate transformation using the HEAD acoustics hear-
ing model [20] [21]. This results in separation into spectra (i) and time (j), only H(f) passes unaltered

• The Separation of Speech & Noise then separates the degraded spectra D(i, j) into (processed) speech P(i, j) 
and noise N(i, j)

• The Binaural Processing stage incorporates that the human ear is capable to improve the SNR when listening 
binaurally as compared to monaural listening (Equalization-Cancellation Model). This block requires the 
availability of the isolated speech and noise (masking) components which have been generated in the previ-
ous step. It puts out the “binaurally corrected” versions of all input signals, namely the degraded speech sig-
nals DB(i, j), the processed speech signal PB(i, j) and the noise component NB(i, j).

• The Metrics block combines the various signals generated by previous stages via level-based as well as cor-
relation-based metrics. The results are aggregated to an overall metric

• From the metric block, various single values are available and combined by non-parametric regression anal-
ysis. This results in a single Listening Effort score. Machine learning procedures are used here for the instru-
mental derivation of the Mean Opinion Score for listening effort (MOS-LE).
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3.1.2 Auditory Databases for Training and Validation
As a basis of any instrumental prediction model, listening examples are required to train and validate the model. 
These listening examples need to cover the entire quality range of devices for which the model is to be developed. 
Furthermore, these listening examples need to include all impairments which may arise from signal processing 
and which are relevant for the user’s subjective impression.
Different applications, ambient noises, devices, implementations and possible speech processing algorithms 
need to be taken into account when developing an objective test method. In order to predict all these scenarios 
reliably, numerous noisy speech samples have to be available. To generate these types of listening examples, 
advanced signal processing techniques for simulation as well as a large variety of devices should be available. 
In addition, a variety of realistic noise scenarios where these devices are used in, need to be available.
A set of test conditions are combined in a test database. Each test database contains a set of speech samples 
processed with different devices and/or algorithms combined with a certain noise type (or silence), ideally cover-
ing the complete range of Listening Effort and a set of reference conditions. Mapping of different test databases 
to each other is realized by mapping to the reference conditions. The purpose of auditory tests is twofold:
• So-called training databases are used to develop and train the objective model for best performance
• So-called validation databases are needed after model development is completed. The auditory test results 

of these databases were never seen before by the model. They provide information about the robustness 
and validity (generalization) of the objective model

More detailed information on training and validation databases can be found in ETSI TS 103 558 [4]. 

3.2 ABLE as an ACQUA Application
Beside a large number of devices under test, high quality test equipment is required to generate recordings for 
ABLE analysis and/or listening tests. A typical setup for generating such listening examples, which also is used 
for testing real devices, is shown in Figure 4.
Here, the example of testing an ANC headset in conjunction 
with a Head-and Torso Simulator (HATS) is illustrated. Pre-
recorded background noise is played back in a laboratory us-
ing a standardized sound-field generation system (see 
ETSI TS 103 224 [22]). This setup reproduces various back-
ground noises representative for the typical environmental 
noise situations with a high degree of accuracy around the 
device under test (DUT).

Fig. 4: Measurement setup for testing ANC

Based on the chapter 3.2, the following software and hardware components are generally required to test ABLE 
with ACQUA. Depending on the individual use case, additional hardware and/or software may be needed.

Analysis Software Code
ACQUA Advanced Communication QUality Analysis software 6810
+ ACOPT 37 Software Option ABLE 6869

n
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A typical setup for testing listening effort with an ANC-capable Bluetooth® headset with ABLE is shown in figure 5. 
labCORE transmits a clean speech signal to the headset via Bluetooth®. 3PASS lab simultaneously plays back 
typical environmental noises for this application. Via labCORE, ACQUA receives the binaural degraded speech 
signals from the artificial ears of HMS. Clean speech and binaurally recorded degraded speech are sent to the 
prediction algorithm (see chapter 3.1.1) to calculate a MOS-LE for perceived listening effort.

Fig. 5: Exemplary setup for testing listening effort with an ANC-capable Bluetooth® headset

Background Noise Simulation System Code
3PASS lab 3-dimensional playback of acoustic sound scenarios - lab version 6990
or (depending on application)
3PASS flex 3-dimensional playback of acoustic sound scenarios - flex version 6995

Head And Torso Simulator Code
HMS II.3-33 HEAD Measurement System with 3.3 pinnae, standard version 1230
+ HIS L HEAD Impedance Simulator, left, for HMS II.3/4/5 1231
or (depending on application)
HMS II.3-LN HEAD Measurement System with 3.3 pinnae, low-noise version 1230.3
+ HIS L-LN HEAD Impedance Simulator, left, low-noise version, for HMS II.3/4/5 1231.3

Hardware Platform Code
labCORE Modular multi-channel hardware platform 7770
+ coreBUS labCORE I/O mainboard 7710
+ coreIN-Mic4 labCORE microphone input board 7730
+ coreBEQ labCORE Binaural EQualization, incl. filter set for one artificial head 7740

labBGNUSB

Pulse

Bluetooth
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1
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4
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7

8

USB
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ABLE can be added into ACQUA as one of many ACQUA Op-
tions, or in short ACOPTS. ABLE is ACOPT 37. Figure 6 shows 
a Single Measurement Descriptor (SMD) for a listening effort 
measurement with ABLE in ACQUA.

Fig. 6: ABLE measurement descriptor in ACQUA
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4 Practical Application of ABLE
As laid out in chapter 2 of this document, assessing listening effort is an appropriate method to evaluate and an-
alyze speech transmission for the receiving conversational partner. In this chapter, the instrumental analysis 
method ABLE is applied to real-world examples. The goal is to determine how ABLE fares in different fields of 
application that involve speech transmission.
Please note that in the following, a “better” or “improved” listening effort equals a lower actual effort for a person 
to listen to and understand speech. The the same manner, a “worse” or “worsened” listening effort equals a higher 
effort for a person to understand speech. Therefore, a better listening effort equals higher a MOS-LE, a worse 
listening effort equals a lower MOS-LE.

4.1 ANC Headsets

4.1.1 Scope & Setup
Active noise cancellation (ANC) is increasingly popular in consumer headsets. When combined with speech play-
back through the headset, the reduction of outside noise ideally improves listening effort by increasing the SNR 
at the ear.
To examine the properties of speech playback with ANC headsets in the presence of background noise, two rep-
resentative consumer headsets with ANC were chosen. In a first step, their general noise cancellation perfor-
mance is assessed. After establishing this baseline, both headsets are tested with speech playback for listening 
effort with ABLE to determine if and how their ANC performance influences listening effort.
Speech signals are sent to the headsets through a Bluetooth® connection. All measurements were performed with 
both headsets set to nominal volume, which equals a Receive Loudness Rating (RLR) of 2.0 dB. This depicts 
listening situations such as podcasts and radio broadcasts (speech in super-wideband) or telephony (speech in 
narrowband/super-wideband), all performed via Bluetooth®.
Measurements were performed in a test cabin equipped with a background noise simulation system according to 
TS 103 224: 3PASS lab. The system has been equalized with the symmetric microphone array MSA II to ensure 
accurate background noise simulation at both ears.
Recordings of the headsets were obtained with HMS II.3, which was equipped with artificial ears of Type 3.3 
(ITU-T P.57 [23]). For an overview of further hardware and software for use with ABLE, please refer to chapter 3.3.

4.1.2 General Active Noise Cancellation Performance
The figures 7 and 8 show the passive isolation and active noise cancellation performance of the selected head-
sets in the presence of background noise. The reference, a pink noise signal, was played back by the background 
noise simulation system and recorded with the artificial ears of HMS II.3-33 without a headset. The below curves 
for passive noise isolation and active noise cancellation therefore represent the headsets’ performances as a di-
rectly readable decibel value.
In general, passive noise isolation of headsets is most effective at higher frequencies due to increased absorption. 
Active noise cancellation on the other hand is most effective at low frequencies – long wavelengths are easier to 
be matched and subsequently canceled than short wavelengths. Hence, the combination of passive noise isola-
tion and active noise cancellation in a headset allows an effective reduction of background noise from a listener’s 
perspective.
To compare the ANC performance of the chosen headsets, three measurements at the right ear were performed 
for each headset:
1. Background noise (pink noise) without the headset
2. Background noise (pink noise) with the headset, ANC deactivated
3. Background noise (pink noise) with the headset, ANC active

The following three figures show the resulting spectra. The curves for passive noise isolation (black curve) and 
passive isolation + active noise cancellation (blue curve) show the response of the headset in respect to back-
ground noise. This type of presentation allows to directly read the headsets’ performances in decibels.
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Headset A (Figure 7) shows effective passive isolation (black curve) only above 3 kHz. Below, and thus within the 
typical frequency range of human voice, passive isolation is poor. Additionally, between 180 Hz and 500 Hz back-
ground noise is amplified by acoustic resonances in the earcup cavity.
Active noise cancellation works most effectively between 70 Hz and 550 Hz. ANC performance is countered by 
the aforementioned undesirable acoustic amplification, which leads to reduced cancellation of background noise 
at the ear in that frequency range. On top of that, the ANC system amplifies background noise between 1.4 kHz 
and 6 kHz, countering the passive isolation performance to an extent. In combination, headset A shows poor total 
noise reduction performance.

Fig. 7: Noise isolation (black) and total reduction (blue) performance of a headset with poor ANC (Headset A)

In contrast, headset B (Figure 8) shows an effective passive isolation performance, beginning beyond 300 Hz and 
improving further beyond 600 Hz. Active noise cancellation of headset B is very effective from 30 Hz to 700 Hz. 
ANC is well matched to the passive isolation, allowing for the effective reduction of background noise over most 
of the range of human hearing. Thus, headset B serves as an example for good noise cancellation performance.

Fig. 8: Noise isolation (black) and total reduction performance (blue) of a headset with good ANC (Headset B)

Figure 9 displays the overall background noise reduction of both headsets in direct comparison. The curves rep-
resent the at-the-ear background noise reduction performance that users can expect.
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Fig. 9: Total noise reduction performance of both headsets in direct comparison

To better understand how this difference in performance influences speech playback and thus listening effort, the 
measurement data shown as curves in figure 9 are displayed as time data in figure 10. 

Fig. 10: Time data of both ANC headsets: background noise (pink noise) level at the right ear

The better cancellation performance of headset B (blue) is represented by the significantly lower level of noise at 
the ear in respect to headset A (black). Typically, ANC systems adapt well to stationary noise as their ANC sys-
tems require a finite amount of time to process their input signal and generate the inverse signal to cancel it out. 
As established previously, these systems usually are most efficient at low to mid frequencies, at which pink noise 
as well as many real world background noises, are most intense.
As a next step, a narrowband speech signal is played back through the headsets in the presence of the same 
background noise. Figure 11 shows the results as time data.
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Fig. 11: Time data of both ANC headsets: background noise (pink noise) level at the right ear
with added playback of narrowband speech through the headset

Due to its better noise cancellation performance, headset B (blue) achieves a significantly higher SNR at the ear 
than headset A (black) by reducing the noise component. However, this time data does not quantify by how much 
the better performance of headset B changes listening effort as perceived by the user. This is exactly what ABLE 
was developed for. The MOS values resulting from its analysis present a comprehensive and easily comparable 
evaluation of user perception. It is therefore expected that headset B requires less listening effort and thus reach-
es a higher MOS than headset A when analyzed with ABLE.

4.1.3 MOS-LE across various Noise Scenarios (NB)
Figure 12 shows the MOS-LE calculated by ABLE for both headsets. Background noise has been changed to four
common noise scenarios. The speech signal again is narrowband (NB), measurement conditions match the con-
ditions laid out in the preceding sub-chapters.

Fig. 12: MOS-LE of the two ANC headsets with narrowband speech for four background noise scenarios

As expected, the headset with superior noise cancellation performance – headset B – performs better than 
headset A across all scenarios. Highly time-variant noises with high volume levels (‘Railway’ & ‘Crossroad’) lead 
to the lowest MOS-LE results as these soundscapes are more difficult for ANC systems to react to. Stationary 
signals like the ‘Train’ scenario allow good ANC adaptation and thus reach a slightly higher MOS-LE. The more 
effective ANC of headset B becomes apparent in this scenario through its significantly higher MOS-LE of 2.66 as 
opposed to a MOS-LE of 1.75 for headset A.
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The ‘Station Building’ scenario, a mildly crowded railway station concourse, only has little surrounding noise and 
therefore leads to good scores for both headsets.

4.1.4 MOS-LE across various Noise Scenarios (NB vs. SWB)
The test described in the previous chapter is now repeated with speech playback in super-wideband (SWB) in-
stead of narrowband (NB). As laid out in chapter 4.1.1, both headsets are set to a Receive Loudness Rating (RLR) 
of 2.0 dB. Figure 13 shows the results calculated by ABLE. The narrowband scores from the previous chapter are 
displayed for reference.

Fig. 13: MOS-LE of the two ANC headsets with super-wideband speech for four background noise scenarios

The enlarged frequency range of super-wideband speech can be reproduced very well by headsets. Their opti-
mization for high quality reproduction of sound across the whole human range of hearing, of course, translates 
into the speech domain as well. Thus, the swap from narrowband to super-wideband generally increases perfor-
mance of both headsets across all scenarios. There is only one exception: Headset A in the ‘Station Building’ 
background noise scenario. In accordance with the super-wideband MOS-LE for ‘Train’ and ‘Crossroad’, it ap-
pears that headset A reaches its peak performance at a MOS-LE between 2.3 and 2.5. Thus, there is no improve-
ment over the narrowband MOS-LE for ‘Station Building’.
Headset B is able to substantially improve its performance across all four scenarios. Similar to headset A, it reach-
es peak performance, albeit in a higher MOS-LE range of between 3.1 and 3.4.
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4.2 Mobile Phones

4.2.1 Scope & Setup
Mobile telephony is the most common application for which speech intelligibility and the related listening effort are 
important factors. Of course, background noise is a very common occurrence in everyday use of mobile phones. 
Additionally, the characteristics of codecs, issues in data transfer, the quality of microphones and loudspeakers 
as well as other factors all add their “individual signature” to the transmission chain.
To assess the impact of these factors on the quality of mobile telephony in a black box approach through ABLE, 
a common smartphone model was chosen. The following sub-chapters compare MOS-LE calculated with ABLE 
for different frequency ranges (narrowband vs. super-wideband), background noises, use cases (handset vs. 
handheld hands-free) and volume settings.
All measurements for the chapters 4.2.2 and 4.2.3 comparing MOS-LE between narrowband and super-wideband 
were performed at nominal volume. The volume comparison in chapter 4.2.4 was performed with narrowband 
speech. In handset mode, the left (free) ear signal consists of background noise, but no speech. This is taken into 
account by ABLE by its internal binaural processing.
Measurements were performed in a test cabin equipped with a background noise simulation system according to 
TS 103 224: 3PASS lab. The system has been equalized with the asymmetric microphone array MSA I to ensure 
accurate background noise simulation at the right ear.
Recordings of the handsets were obtained with HMS II.3, which was equipped with artificial ears of Type 3.3 
(ITU-T P.57 [23]), and handset positioner HHP IV. For measurements, default mounting and the default/alterna-
tive handset position were used. For an overview of further hardware and software for use with ABLE, please refer 
to chapter 3.3.
The receive loudness ratings (RLR) play an important role in judging test results. They influence the measurement 
results and thus the MOS-LE. Of course, it is desirable to keep RLR deviations as small as possible. With the 
typically large steps between playback volume settings, variance can only be compensated to an extent. The fol-
lowing table shows the RLR that were used for the tests in chapter 4.2.

Table 2: RLR values that were used for all measurements in this chapter.

Volume Setting
Nominal (Nom) Maximum (Max)

Handset
NB 1.0 dB -9.7 dB

SWB 0.8 dB -8.0 dB

Handheld Hands-free
NB 8.7 dB 6.1 dB

SWB 9.8 dB 7.1 dB
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4.2.2 MOS-LE in Handset Mode (Six Noise Scenarios, NB & SWB)
In this sub-chapter, the impact of the frequency range for speech transmission is examined. The chosen smart-
phone is used for a handset call in five different background noise environments. The call is performed 
in narrowband (NB) and super-wideband (SWB). Figure 14 shows the resulting MOS-LE calculated by ABLE.

Fig. 14: MOS-LE of the smartphone in handset mode with narrowband (NB) and
super-wideband (SWB) speech in the presence of background noise

The analysis shows a rather close relation between the MOS-LE for both frequency ranges, narrowband and su-
per-wideband. The larger frequency range of SWB better depicts the real-life tonality of speech signals, but im-
proves listening effort (higher MOS-LE) only to an extent when background noise is present.
This behavior is examined further with the use case ‘Cafeteria’ as an example. Figure 15 shows absolute spectra 
of this scenario at the right ear in handset application. The curves for speech playback without background noise 
(black and blue) demonstrate the significantly wider frequency range of SWB. It is noteworthy that both speech 
signals reach a higher sound pressure level at the ear than the background noise without speech (red). The in-
version of this level advantage below 200 Hz is not a deciding factor for listening effort as this is the very low end 
of the human vocal range.
Consequently, SWB produces an audibly better speech playback quality than NB, resulting in a slightly higher 
MOS-LE as shown in figure 14.

Fig. 15: Absolute spectra of the smartphone’s handset loudspeaker with NB (black) and
SWB (blue) speech in the presence of the background noise ‘Cafeteria’ (red)
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4.2.3 MOS-LE in Handheld Hands-Free Mode (Five Noise Scenarios, NB & SWB)
In this clause, testing as laid out in chapter 4.2.2. is repeated with the smartphone in handheld hands-free mode. 
Figure 16 shows the respective MOS-LE results for the same five background noise scenarios.

Fig. 16: MOS-LE of the smartphone in handheld hands-free mode with narrowband (NB) and
super-wideband (SWB) speech in the presence of background noise

Again, silence scores high in respect to all noisy environments. In contrast to handset mode however, super-wide-
band does not necessarily reach a higher MOS-LE than narrowband. The reasons for this are twofold:
1. The receive loudness rating (RLR) is 1.2 dB higher in favor of NB (see table 2)
2. The overall sound pressure level of speech generally is low in respect to background noise

The nature of hands-free application makes the smartphone’s loudspeaker struggle to reach a good SNR at the 
ear. The loudspeaker is aimed away from the ear, the phone is positioned at a distance to the listener. Surround-
ing noise therefore becomes highly intrusive in respect to speech playback. Additionally, the hands-free loud-
speaker has physical limits in terms of frequency reproduction range and maximum volume. Aiming it away from 
the listener additionally attenuates the higher frequencies of the human vocal range due to the loudspeaker’s in-
herent directivity.
As a result, the speech-centered narrowband is able to counter the challenges of this situation better than super-
wideband. The additional low- and high-frequency components of SWB are either not reproduced at the ear at all 
or tie up capacities from the frequency range in which the hands-free loudspeaker works most efficiently: the nar-
rowband. Please also see figure 17 for further information.
The only exception in terms of MOS-LE results is the car scenario, in which the driving noise of a car at 130 km/h
is simulated via 3PASS flex. This noise is stationary, low frequencies are very pronounced. Narrowband speech 
therefore is masked effectively. Super-wideband on the other hand is able to “escape” the masking driving noise 
through its high frequency components, effectively improving listening effort. This leads to SWB having a slightly 
higher MOS-LE in this use case. Highly dynamic noises with a wider range of frequencies like ‘Pub’ and ‘Cafeteria’ 
on the other hand give NB speech a clear advantage.
To analyze these results, the use case ‘Cafeteria’ is examined in more detail in as an example. Figure 17 shows 
the absolute spectra of the background noise scenario ‘Cafeteria’ (red), the speech signal for narrowband (black) 
and super-wideband (blue) at the right ear for handheld hands-free application.
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Fig. 17: Absolute spectra of the smartphone’s hands-free loudspeaker with NB (black) and
SWB (blue) speech in the presence of the background noise ‘Cafeteria’ (red)

In this use case, the extension to low frequencies of speech playback in SWB is negligible at the ear. The exten-
sion to high frequencies is present, but superimposed at the ear by background noise. Additionally, the switch to 
SWB reduces speech output level in respect to NB by an average of 6 dB between 1.8 kHz and 3.7 kHz. This, 
combined with the small RLR advantage, leads to narrowband being equal or advantageous for hands-free ap-
plication in the majority of environments.

4.2.4 MOS-LE Volume Comparison in Handset Mode (Volume Comparison)
In this sub-chapter, the calculated MOS-LE for nominal (Nom) and maximum (Max) volume of the smartphone in
handset mode and compared. The background noise scenarios are identical with the previous chapters 4.2.2 and
4.2.3. All measurements are performed in narrowband. Figure 18 visualizes the MOS-LE results.

Fig. 18: MOS-LE of a mobile phone in handset mode at nominal and maximum volume
in the presence of background noise

In handset mode, the decibel advantage for the maximum volume setting is very substantial: + 10.7 dB for NB, 
+ 8.8 dB for SWB. As a result, the latter is advantageous in most environments. However, the benefit of a higher 
playback volume is countered by deteriorated playback quality. At maximum volume, the phone’s loudspeaker 
and amplifier operate at their physical limits, which adds significant amounts of distortion to speech playback.
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Consequently, from a viewpoint of listening effort, maximum volume is not necessarily better than nominal vol-
ume. This is visible in the MOS-LE results for ‘Silence’ and ‘Crossroad’.
Without interfering background noise, the advantage of higher volume and loss of quality balance out. The highly 
time-variant ‘Crossroad’ scenario on the other hand is so intrusive that single test sentences are incomprehensi-
ble regardless of playback volume. In the remaining three scenarios, maximum volume gains an advantage by 
improving the SNR at the ear.

4.2.5 MOS-LE Volume Comparison in Handheld Hands-Free Mode
(Volume Comparison)

This sub-chapter repeats testing as described in the previous sub-chapter, but with the phone being in handheld
hands-free mode instead of handset mode. Figure 19 shows the associated MOS-LE.

Fig. 19: MOS-LE of a mobile phone in handheld hands-free mode at nominal and maximum volume
in the presence of background noise

As opposed to handset mode, the RLR between nominal and maximum volume is much smaller than in handset 
application: + 2.6 dB for NB, + 2.7 dB for SWB (see table 2). Additionally, the natural physical limits of loudspeaker 
and amplifier are much more dominant in far-from-the-ear applications (also see chapter 4.2.3). Consequently, 
possibilities to improve listening effort through raising the playback volume are miniscule. As laid out in the pre-
ceding chapter, setting the phone to maximum volume is generally accompanied by significantly higher playback 
distortion. Again, this effect is pronounced in hands-free application.
The combination of these effects leads to an equal or worsened listening effort and thus lower MOS-LE for max-
imum volume. Only one background noise scenario reaches a higher MOS-LE for maximum volume: the ‘Car’. 
This background noise is intrusive, but also time-invariant. This allows human hearing to separate speech from 
noise more efficiently than time-variant noise such as ‘Pub’, ‘Crossroad’ and ‘Cafeteria’. In ‘Car’, the additional 
speech playback distortion in hands-free application is masked by driving noise. Thus, the small advantage in 
playback volume is able to counteract the additional distortion in this use-case and reach a slightly higher 
MOS-LE.
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4.3 ICC systems

4.3.1 Scope & Setup
ICC systems aim to make conversation in vehicles easier by capturing typically the driver’s voice and playing it 
back into the cabin in real time. To judge how well an ICC system fulfills this duty, assessing listening effort for 
vehicle passengers is a viable method.
In the following, a representative ICC system of a car was chosen. Measurements were performed in a stationary 
vehicle equipped with the background noise simulation system 3PASS flex. Talker and listener were simulated 
with two HMS II.3-33, one in the drivers seat and one in the rear behind the passenger seat. For additional hard-
ware and software used for these measurements, please refer to chapter 3.3.

4.3.2 MOS-LE - ICC-System (on/off, 60/120 km/h)
The acoustic situation at hand – two conversational partners at a distance and not facing each other in a vehicle
cabin with driving noise – “naturally impedes” good conversational quality. This is exactly why ICC systems can
be very beneficial.
Figure 20 compares MOS-LE with the ICC system on and off, both calculated by ABLE for 60 km/h and 120 km/h.

Fig. 20 MOS-LE comparison with deactivated vs. active ICC system at 60 km/h and 120 km/h

The MOS-LE results show two noteworthy patterns for this communication scenario:
1. Using the ICC system increases the MOS-LE at both speeds, proving the effectiveness of the system under 

test.
2. At 120 km/h, listening effort is generally worse than at 60 km/h due to increased driving noise. Additionally, 

the jump in MOS-LE with the ICC system is smaller than at 60 km/h.
Beyond low speeds, driving noise becomes the dominant noise component in the cabin. With high levels of driving 
noise, even clean speech played back through the ICC system at high volume levels can only improve MOS-LE 
within a limited range. As a consequence, small increases of the MOS-LE become more relevant with increasing 
vehicle speed.
This knowledge allows selective improvement of the ICC system, e.g. by increasing amplification and/or shaping 
the output’s frequency response in relation to vehicle speed. Therefore, calculating the MOS-LE with ABLE allows 
manufacturers to test general performance of their ICC system as well as tweaking it for best performance in ar-
bitrary driving situations without the need to perform actual driving.
Tests for functionality and quality of ICC systems and components are defined in Recommendation ITU-T P.1150 
[24] issued in January of 2020. The recommendation incorporates listening effort as standardized in 
ETSI TS 103 558 [4]. Thus, ABLE can be used to test listening effort in this application.
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5 Summary
This application note outlined the task of analyzing near-end voice communication quality in the presence of back-
ground noise. Existing SI-based metrics were examined regarding their qualification for this challenge. As none 
of them were explicitly developed for this task, inconsistent test results are inevitable. Additionally, no SI metric 
provides a standardized listening test design and the corresponding instrumental testing method at the same 
time. Therefore, reliable testing is impossible.
To solve this dilemma, the committee ETSI TC STQ developed a metric for near-end voice communication quality 
analysis, which was published as ETSI TS 103 558 (2019-11) [4]. It introduces perceived listening effort as a bet-
ter suited approach to analyze near-end voice communication quality. Detailed analyses have shown that the re-
sults calculated via the described instrumental model match results obtained in listening tests very well. The 
‘Assessment of Binaural Listening Effort’, or in short ‘ABLE’, is the implementation of the instrumental model by 
HEAD acoustics as a software option for ACQUA. 
This document explained the operating principle of ABLE and its application to various different fields in telecom-
munication. Analyses of measurements showed that the method produces very plausible test results – the calcu-
lated MOS-LE match the expectations across all scenarios.
ABLE uses noisy speech signals as perceived by the user as an input. The highly accurate background noise 
simulation of 3PASS complements the measurement setup. Measurements with ABLE are fully repeatable and 
thus ensure consistent testing. Both input signals – binaurally recorded degraded and clean speech – are readily 
available or easy to obtain for any use case. The use of the established Mean Opinion Score (MOS, [15]) allows 
quick evaluation and comparison of results. The MOS-LE cumulates all information contained in the input signals 
and combines it with a sophisticated model of human auditory perception to obtain a single numerical value.
It can be concluded that ABLE is a simple, but universal, efficient and yet conclusive method for comprehensive 
analysis of near-end voice communication quality in telecommunication.
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