

APPLICATION NOTE

	About this document		
Content	This document is the third part of a series of application notes on the sound energy quantities <i>sound power</i> and <i>sound intensity</i> . It contains information on the determination of sound power on the basis of sound pressure measurements.		
Target group	This application note is intended for acousticians who are interested in the basics of determining sound power from sound pressure measurements with microphones.		
Questions?	Do you have questions? Your feedback is appreciated!		
	For question on the content of this document: limke.Hauswirth@head-acoustics.com		
	For technical questions on our products: <u>SVP-Support@head-acoustics.com</u>		

Sound Power and Sound Intensity – Part 3

Determination of Sound Power from Sound Pressure Measurements

Definition of the measurement surface

To determine the sound power based on sound pressure measurements, a measurement surface must first be defined. The measurement surface is a hypothetical surface on which the sound pressure measurements are performed. It surrounds the measurement object completely or envelops the measurement object in conjunction with a sound-reflecting closed surface¹. Theoretically, the distance between the measurement surface and the measurement object is irrelevant. The larger the distance to the measurement object, the larger the measurement surface, which, in turn, is taken into consideration when calculating the sound power.

Different measurement surfaces are possible, e.g., cubic, hemispheric, and a measurement surface following the contour of the object under examination.

To determine the sound power by means of sound pressure measurements in the free

field, a hemisphere is often used. The hemisphere has the advantage that the sound power can be determined by using relatively few measuring points. According to ISO 3744, it is recommended to start with 10 measurement points. The microphones are positioned with each microphone assigned an equal portion on the surface of the hemisphere.

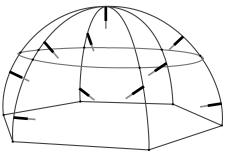
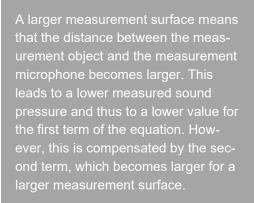
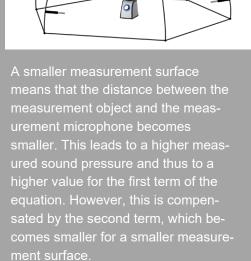


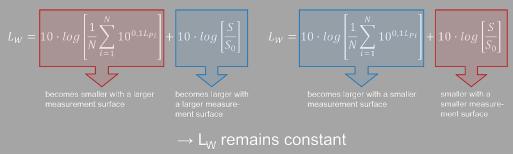
Figure 1: Microphone hemisphere

¹ If the floor is assumed to be sound reflective (e.g., a concrete floor), it does not have to be included in this surface.


If the sound pressure levels at the different measurement points differ too much, the number of microphones must be increased.

Determination of sound power To determine the sound power, the sound pressure level L_P is first determined at several points (1 to N) on a measurement surface S enveloping the sound source in the free field. These measurements can then be used to calculate the sound power level L_W :


$$L_W = 10 \cdot \log\left[\frac{1}{N} \sum_{i=1}^{N} 10^{0,1L_{Pi}}\right] + 10 \cdot \log\left[\frac{S}{S_0}\right]$$


The formula consists of two sections: In the first term, the contributions of the different measurement microphones are averaged energetically and a total sound pressure level in dB is determined. Averaging the sound pressures at the various measurement positions yields a sound pressure that is representative of the entire measurement object, irrespective of the position of the individual measurement microphones. In the second term, the size of the measurement surface S is related to the reference surface S₀ and is also converted into a dB value. Considering the size of the measurement surface makes the calculation of the sound power level independent of the distance between the measurement microphones and the measurement object:

Effect of the size of the measurement surface

0

Accuracy classes	The exact procedure is specified in various standards (e.g., ISO 3744). Depending on the measuring equipment available and the measurement conditions existing during the measurements, the measurement can be carried out according to different accuracy classes. The procedure according to accuracy class 1 (Precision) is the one with the most requirements. Measurements performed according to class 3 (Survey) serve as control measurements.		
Correction values	To make sound power measurements comparable and to eliminate external influ- ences, correction factors may have to be used in the calculation. In this way, back- ground noise and room influences can be corrected. Furthermore, the existing envi- ronmental conditions (e.g., low temperatures) may have to be considered. The correc- tion factors K ₀ , K ₁ and K ₂ used in ISO 3744 serve this purpose, for example:		
Correction factors K ₀ , K ₁ , K ₂	Atmosphere correction K ₀	This correction factor allows unfavorable atmospheric in- fluences to be corrected. For this purpose, both the baro- metric pressure and the temperature prevalent during the measurement must be measured. A value for K_0 in dB is then determined from the measurement results.	
	Background noise correction K ₁	To determine the frequency-dependent correction factor K_1 , a measurement at rest must be performed during which the test object is not in operation. Such a measurement is used to determine the background noise or extraneous noise level. If this value is too high compared to the level during operation, the correction value K_1 must be used. The extraneous noise can be composed of airborne noise, structure-borne noise, and electrical noise of the measuring device.	
	Environmental correction K ₂	The frequency-dependent correction factor K ₂ considers ambient influences that falsify the sound pressure meas- urement (e.g., undesired room influences such as reflec- tions and absorptions).	

Proceed to the <u>fourth application note on sound power</u> providing information on the determination of sound power on the basis of sound intensity measurements.