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Abstract

Though modal analysis is a common tool to evaluate 
the dynamic properties of a structure, there are still 
many individual decisions to be made during the 

process which are often based on experience and make 
it difficult for occasional users to gain reliable and correct 
results. One of those experience-based choices is the 
correct number and placement of reference points. This 
decision is especially important, because it must be made 
right in the beginning of the process and a wrong choice 
is only noticeable by chance in the very end of the process. 
Picking the wrong reference points could result in incom-
plete modal analysis outcomes, as it might make certain 
modes undetectable, compounded by the user's lack of 
awareness about these missing modes.

In the paper an innovative approach wil l 
be presented to choose the minimal number of manda-
tory reference points and their placement. While other 
approaches use results of numerical simulations or rely 
on a visual evaluation of measurement data by the user, 
the presented approach is based on a few simple 
measurements and works automatically without any 
further user-interaction. In addition to traditional 
methods such as the Least-Squares Complex 
Frequency-domain (LSCF) estimator the presented 
approach takes advantage of a Neural Network to 
make user-interaction redundant.

The advantage of the presented approach will 
be shown based on the example of a real structure under 
test.

Introduction

Modal analysis has a long history and has become 
a standard tool across various industrial sectors 
today. It assists troubleshooters, developers, and 

simulation engineers in the search for the dynamic prop-
erties of the object under investigation. Until today, exper-
imental modal analysis is primarily a tool used by 
experts though.

Throughout the entire workflow (as depicted Figure 
1), it is necessary to make subjective decisions based on 
experience, thus influencing the result. Moreover, the 
uncertainty of the decisions and the respective results 
increases with the complexity of the test object. In the 
case of cantilever beams for instance, one can visualize 
which modes are to be expected and what to do to 
capture them, but with more complex components, there 
is less predictability regarding the expected outcome and 
at the same time it is more difficult to make experience-
based decisions.

For every workflow-step depicted in figure 1 research 
is going on to ensure better results or tackle specific 
structural dynamic problems. In addition, great progress 
has been made in the past through the development of 
more advanced algorithms for parameter extraction and 
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  FIGURE 1    Workflow of the experimental modal analysis 
(dark grey box: task, blue box: data)
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the creation of additional indicators for an in-depth 
analysis of the test object.

This paper is more about the simplification of the 
workflow instead of more advanced algorithms to analyze 
very specific structural dynamic problems. The goal of 
this paper is to contribute to more reliable results in 
modal analysis, regardless of the user's individual experi-
ence. It focusses on the first workflow step which is 
according to Figure 1 the planning of the measurement 
setup. Thus the following state of the art is restricted to 
this topic as well.

The planning of the measurement setup involves 
determining the total number and positions of roving 
DOFs (degrees of freedom), as well as the definition of 
one or more reference DOFs. The paper focusses on the 
definition of the reference DOFs.

If the DOFs are not correctly determined, all subse-
quent process steps can be influenced and may potentially 
yield an inaccurate representation of the vibration 
behavior of the investigated system [1].

This will be explained through examples of a free-free 
vibrating beam and an all-around fixed clamped plate 
(Figure 2). The provided examples serve to illustrate that 
the choice of the reference DOF (green/red circles) signifi-
cantly contributes to the results.

In the left part of Figure 2, the first four bending 
modes are depicted. Placing the reference DOF at the 
midpoint of the beam results in the reference DOF coin-
ciding with the nodal point for every other mode. This 
leads to the inability to determine the even modes, as 
there is no displacement at that particular point. In this 
extreme case, 50% of the existing modes would remain 
unextracted.

In the right part of Figure 2, the first six modes of an 
all-around fixed clamped plate are shown. If the reference 
DOF is positioned in the middle, only two of the first six 
modes can be extracted because the reference DOF, 
coincides with a nodal point for all the other modes.

For symmetric components, the scenario is straight-
forward. However, even a slight change in boundary 
conditions, such as altering the clamping conditions, 
makes the estimation increasingly complex and no longer 
easily predictable.

This leads to the outcome that, at the end of an 
experimental modal analysis, only a portion of the modes 

are identified, and the measurements may need to 
be repeated with a different setup, assuming the missing 
modes are even recognized as such.

After the introduction of the challenge of defining the 
reference DOFs, the user has several options to approach 
this problem:

Option 1:
If prior knowledge of the object is available, for 

instance, if it is a modified test object with a system 
behavior not significantly different from its predecessor, 
the already defined reference DOFs can be adopted and 
adjusted as needed.

Option 2:
The user has access to validated or not validated 

numerical models or results. Even though the resonance 
frequencies might still exhibit significant differences from 
reality, the mode shapes in the frequency range of interest 
can provide insight into the required number and location 
of roving and reference DOFs. In the past, different publi-
cations were issued on the topic of reference DOF selec-
tion based on numerical results [2, 3].

Option 3:
If neither of the first two options is feasible, the user 

must decide on reference DOFs solely based on their 
individual experience. For simple structures, an estimation 
can be made by the visual inspection of driving point 
measurements (DPMs) at different locations across the 
object. The DPM is a special type of frequency response 
function (FRF) where the excitation force and the resulting 
acceleration are measured at the same point or at least 
very close to each other.

The DPM can be compared and roughly evaluated 
using peak-picking. However, this approach is limited in 
its applicability, especially when the structure has high 
damping and closely coupled modes. In this case, making 
a robust decision based solely on visual criteria becomes 
challenging, as it is shown in Figure 3.

Furthermore, when there is no numerical model avail-
able, a certain number of measurements is necessary to 
be sure not to miss a mode of the structure under test. 
Experience has shown that 10 to 15 measurements deliver 
a reliable result for most structures. Thus, the effort 
necessary for a visual inspection is increasing.

Moreover, if the modal content of the set of measure-
ments is known one can hardly differentiate between 
closely spaced modes and scattering of poles due to 

  FIGURE 2    Example for the importance of a good choice of 
reference points   FIGURE 3    Examples for the variety of appearances of poles 

in FRF
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measurement inaccuracies just based on visual 
inspection.

The method presented in this paper aims to stan-
dardize the determination of the optimal set of reference 
DOFs, making it more objective, and thereby increasing 
the likelihood of obtaining comparable and reproducible 
results, regardless of the individuals conducting the inves-
tigation. To make this feasible, different requirement to 
the approach where determined.

•• The method should not require a CAD geometry or 
results of numerical simulation. It should solely rely 
on measured data.

•• The method should work in an automated manner 
minimizing user interaction.

•• No additional hardware to the hardware used for the 
modal analysis itself should be used.

•• The additional effort for the user should be very 
limited and should take less time than 15 minutes.

The result should be a suggestion for the optimal set 
of reference DOFs based on the underlying measurement 
data and within the focused frequency range. If not all 
the modes present in the frequency range can 
be described by a single DOF, an additional reference 
DOF should be proposed. The goal is always to find the 
minimum number of required reference DOFs among all 
possible combinations.

The paper is structured as follows: The chapter 
“Description of the approach” starts with on overview over 
the necessary process steps of the approach and gives 
details about the implementation of the solution in the 
respective subsections. In the chapter “Example and 
results” an example structure is introduced and the results 
of the approach together with real measurement data are 
shown and validated. The paper concludes with a summary.

Description of the Approach
As stated above, the idea of the presented approach is 
to give a suggestion for the optimal set of reference DOFs 
solely based on a small experimental prestudy. Figure 4 
shows an overview of the steps necessary for the 
approach, which will be described in more detail in the 
following subsections.

In a first step the frequency range of interest must 
be defined. After that initial step a DPM must be measured 
at one or more potential reference DOFs.

To give an example of how the input for the experi-
mental prestudy could look like a small numerical model 
was set up. The numerical example has the advantage 
over test-based examples, that the modal content is known.

The numerical example consists of a plate of 10 mm 
thickness with the material properties of steel. The edges 
of the plate are 500 mm and 700 mm long and fixed to 
ground. As shown in Figure 5, the sample structure has 
5 mode shapes in the range of 0 to 300 Hz. At three 
different locations on the plate, named DOF 1, DOF 2 and 
DOF 3, the DPM where simulated.

Figure 6 shows the DPMs at the 3 different DOFs 
marked in Figure 5. From visual inspection one could 
estimate that they are able to deliver different modal 
content if used as a reference DOF even though they all 
are located on the same structure with the same modal 
properties. While DOF 1 might be suitable to detect the 
mode at 76 Hz and 238 Hz, DOF 2 shows distinct peaks 
at 76 Hz, 138 Hz, 172 Hz and 229 Hz. For DOF 3 it is very 
difficult to inspect the modal content visually. This visual 
inspection of poles is an example of the option three 
discussed in the introduction.

While for this simple example with a simple structure 
and only three potential reference DOFs, the visual inspec-
tion of DPMs might be sufficient to pick a suitable set of 
reference DOFs, it gets more and more complicated for 
real structures and a realistic number of potential refer-
ence DOFs.

Figure 6 outlines a requirement for the experimental 
prestudy, in addition to those specified in the introduction. 
The objective is to progressively acquire a deeper under-
standing of the dynamic properties of the structure with 
each measurement. When only DOF 1 is provided as an 

  FIGURE 4    Flowchart of the approach

  FIGURE 5    Numerical example and first mode shapes
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	 4 MAKING MODAL ANALYSIS EASY AND MORE RELIABLE

input to the prestudy, information about two modes 
becomes available. Introducing DOF 2 as an input further 
unveils additional modes of the structure. The evaluation 
of potential reference DOFs must be adapted according 
to this new, available information.

Therefore, the ongoing process is iterative and 
repeated with every measured DPM for all the DPMs 
measured so far (see Figure 4). This ensures that every 
additional information about the structure under test is 
considered in the evaluation.

To make the prestudy easy to use it is mandatory 
that the following evaluation of the DPM and the dynamic 
properties of the structure work automated and without 
user interaction. Especially because the evaluation steps 
must be repeated for every measurement as stated above.

The steps, that are part of the automated processing 
(see Figure 4), will be briefly introduced in the following 
paragraph and discussed in detail in the corresponding 
sections of the paper.

The automated processing of the measured DPMs 
begins with a pole detection to assess the modal informa-
tion present in each of the respective DPM. In the next 
step the detected poles for the whole dataset are 
processed and compared to determine suitable points for 
exciting specific modes. Based on the results of this step, 
the optimal set of reference DOFs is suggested to the 
user. Since with every measurement more knowledge of 
the structure’s dynamic properties is gained, the sugges-
tion becomes more and more stable with a rising number 
of iterations. If the user is confident with the suggestion, 
the process ends. If the user is not confident with the 
suggestion, the process can be restarted by measuring a 
new DPM at a different potential reference DOF.

Automated Detection of Poles for 
Every DPM
To evaluate whether a specific DOF is suitable to detect 
a certain mode, the modal content of the DPM must 
be known.

Extraction of modal content from a single FRF or a 
set of FRFs is the central and thus a very common task 
in structural dynamics and modal analysis. To perform 

this task many methods were developed in the past. Since 
a DPM is only a special type of FRF, these methods can 
be applied to DPMs as well.

One prevalent and widely employed method to 
extract modal parameters from measured data is the 
Least Squares Complex Frequency method (LSCF) [4]. It 
is known to be robust and suitable for a wide range of 
frequencies and modal damping. For more details on the 
method please refer to the given reference. For this paper 
only the knowledge of the basic idea is important: The 
LSCF is an iterative approach that tries to fit a mathe-
matical model of increasing order to the measured FRF. 
The optimal value for the highest requested order 
depends on the number of eigenfrequencies present in 
the dataset and must be chosen by the user. If the highest 
requested order is too low, not all eigenfrequencies can 
be detected, if it is chosen too high, mathematical poles 
arise, that do not represent an eigenfrequency of the 
structure.

There are other parameters necessary to extract 
poles with the LSCF such as:

•• The number of iterations where a pole must 
be present to be regarded as a stable pole

•• The frequency limits which describe how similar the 
frequency of the respective pole must be during this 
number of iterations

•• The damping limit, which describes how similar the 
damping of the respective pole must be during this 
number of iterations.

However, the highest requested order is the most 
volatile parameter as it shows a strong dependency of 
the specific dataset, while the other parameters are 
seldom changed and mostly kept as default values.

Thus, to make the use of the LSCF easier and more 
reliable a neural network was developed that estimates 
the highest requested order based on the measured data 
without user interaction [5]. The following sections give 
more details on the neural network and how it contributes 
to the prestudy presented in this paper.

Automated Estimation of Highest Requested Order 
Based on a Neural Network  As stated above the highest 
requested order depends on the number of eigenfre-
quencies and corresponding poles present in a dataset 
or a single FRF. Therefore, the task that the neural network 
should perform is the estimation of the number of poles 
in a DPM. Neural networks have among other strengths 
a strong potential for feature detection and are widely 
used for many different applications. In the implementa-
tion and training of a neural network, careful consider-
ation must be  given to both the architecture of the 
network itself and the training process, including the data 
utilized for training. These topics are covered in the 
following subsections.

Network Architecture. The network architecture 
describes how a neural network is structured, e.g., which 
types of layers are used to build the network. To define 

  FIGURE 6    Example of numerically calculated DPMs for the 
points shown in figure 5
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the network architecture, at first the problem must 
be described in a way that a neural network is able to 
solve it. In this case the desired output is the number of 
poles present in the DPM. The potential input is the DPM 
itself. One possible solution is to build a classifier that 
sorts the DPM into different classes: e.g., zero poles, one 
pole, two poles and so on. This approach would lead to 
a high number of classes, which the network would have 
to differentiate. On the other hand, if the network is 
capable to detect the features of a pole, then the addi-
tional effort to know not only the total number but the 
position of the poles as well is neglectable. Thus, the 
desired output is a vector with as many entries as the 
input has frequency steps and for every frequency step 
the neural network should give a probability whether 
there is a pole at this specific frequency or not.

Keeping this aim of the neural network in mind, the 
next thing to think about are the features of a pole in a 
DPM. It is not possible to decide whether a DPM has a 
pole at a specific frequency step or not solely based on 
the respective frequency step alone. Every frequency step 
must be regarded in relation to the surrounding frequency 
steps. This task of evaluating a specific value based on 
its surroundings is commonly solved with the help of a 
U-Net based on convolutional layers.

Like it is depicted in Figure 7 a U-Net consists of 
two branches:
•• The encoder is used to extract features from the 
input data. It reduces the spatial information and 
increases the feature information at the same time.

The decoder is used to map the extracted features 
back onto the initial spatial representation (in this case 
the number of frequency steps).
Since the architecture of the U-Net is dependent on 

the size of the input, it is mandatory for the input to 
always be the same size. In our case each input consists 
of the imaginary and the real part of one DPM and it is 
the number of frequency steps which must be constant. 
To achieve this, the input is resampled to a fixed number 
of frequency steps before it is given to the neural network.

In addition to the general structure of a U-Net, 
consisting of encoder and decoder, Figure 7 lists the layers 
that are used to build the network.

An important layer for the U-Net to fulfill its task is 
the convolutional layer. In this case it is used in one dimen-
sion. It consists of several filters of a predefined width 
that slide along the data and calculate the weighted sum 
over the width of the filter. The weights are individual for 
each filter, and they are adapted during training. This way 
each filter of a convolutional layer is used to condense a 
feature of the input data to a corresponding feature map 
[6]. The batch normalization, which is commonly used in 
combination with a convolutional layer, helps to speed up 
convergence of the training by normalizing the input over 
the batch size [7]. Following the convolutional layer and 
the batch normalization, Figure 7 shows a piecewise linear 
function called rectified linear unit. It gives zero as an 
answer for negative inputs and for positive inputs it gives 
the input itself as an output. This adds non-linearity to 
the network and prevents the weights from getting stuck 
near zero or rising to very high values. Instead, the recti-
fied linear unit increases the sparsity of the network 
forcing some weights to zero. Neural networks, which 
are sparse to a certain extent, learn faster and are less 
at risk to overfit. Overfitting describes an effect, where 
the network, rather than extracting features, remembers 
the data itself. This implies that it excels in performance 
on known data but struggles with the generalization to 
unknown data [8, 9]

The combination of convolutional layer, batch normal-
ization and rectified linear unit is depicted as a red arrow 
in Figure 7.

The green arrows in Figure 7 represent max pooling 
layers. They are used to keep the focus on prominent 
features and neglect those, which are less prominent. 
This is done by a moving filter which calculates the 
maximum value of its input over its width. [10]

The blue arrows in Figure 7 indicate upsampling 
layers. These are used to map the extracted features back 
onto the initial spatial representation, in this case back 
onto the initially existent number of frequency steps.

Datasets for Training, Validation, and Test. To train a 
neural network, like the one designed and used in this 
study, a set of labeled data is needed. Labeled means in 
this case, that the expected output of the neural network 
comes with the data.

The dataset should be divided into three parts. The 
major part is used to train the network. This means, the 
input data is fed into the network and the output of the 
network is compared to the desired output. Based on the 
error between actual and desired output, the weights of 
the neural network’s neurons are adapted, and the proce-
dure is repeated.

Another part of the dataset is used do validate the 
network. Validation means the adaption of hyperparam-
eters like batch size, learning rate etc. Furthermore, the 
validation set is used to check for overfitting between the 
training epochs.

The third part of the data used as a test set. The test 
set is a set of data, which is totally unknown to the 
network during training. It is used after training to check 
the network’s performance on unknown data.

  FIGURE 7    Structure of the U-Net used for this prestudy [5]
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In addition to the fact that the expected output of 
the neural network for the specific DPM must be provided, 
there are more specifications that need to be fulfilled: the 
data must be similar enough to enable the neural network 
to converge but at the same time diverse enough to 
enable generalization to unknown data. Furthermore, a 
huge number of datasets is necessary. Since the neural 
network receives the DPM one by one, without context, 
there is no need for consistent sets of DPM though. 
Especially the demand for many datasets, for which the 
expected output of the neural network is known, is diffi-
cult to meet using real measurement data. In this case 
approximately 700000 DPM were needed. Therefore, it 
was decided to train the network on synthesized data. 
Synthesized DPM have several advantages:

•• They are available in an unlimited number.

•• The modal content and thus the expected output of 
the neural network are known.

•• The dataset can be designed to meet every 
demand. If a specific set of parameters is hard to 
train for the network, more DPM with a similar set 
of parameters can be added.

To synthesize the DPM a simple formula was used, 
which is known form the curve fitting process [11]:

	 ( )
1

mN
pqr pqr

pq
r rr

A A
H

j j
ω

ω λ ω λ

∗

∗

=

 
= +  − − 
∑ 	 (1)

Where,
Hpq(ω) = transfer-function from p to q in dependency 

of the angular frequency ω
λ = pole (λ* = complex conjugate pole)
A = residue (A* = complex conjugate residue)
Nm = number of poles

The residue A can be  calculated using the 
following equation:

	
1

2pqr pr qr
dr r

A
j m

ψ ψ
ω

= 	 (2)

Where,
ωdr = damped angular eigenfrequency of the mode r
mr = vibrational mass of the mode r
ψqr and ψpr = shape coefficients

The decision to use synthesized DPM based on the 
formulas (1) and (2) lead to the possibility to create DPM 
with randomized input. Among other parameters, the 
number and frequency value of eigenfrequencies were 
randomized, furthermore, the modal damping, the shape 
factors and the vibrational mass. To make the generaliza-
tion to real measurements easier, different levels of noise 
were added to the synthesized DPM. It is important to 
notice that in this case it is not necessary to exactly mimic 
experimental data. Instead only the features of poles 
present in experimental data need to be present in the 
synthetical DPM as well.

Results of the Neural Network. Figure 8 shows the 
result of the neural network on the DPMs derived from 
the model introduced in Figure 5. Especially regarding 
DOF 3 the additional value compared to a visual inspec-
tion is proven. The neural network detects poles that can 
hardly be detected by visual inspection.

While Figure 8 shows the results of the neural 
network on numerical test data which was not used for 
training, Figure 9 shows the results of the neural network 
on data from real measurements of different structures, 
which was neither used for training. The DPM shown in 
Figure 9 where selected to show different mode densities, 
numbers of modes and damping ratios.

Figure 9 reveals, that the estimation of the neural 
network is not always of the same quality. Anyhow it is 
suitable to outperform the human user, keeping in mind 
the speed of the estimation compared to visual inspec-
tion. The neural network fulfills the necessary quality 
criteria because it is not used as a pole estimator on its 
own, but to parameterize the LSCF instead, like shown in 
the following section.

Combination of the Neural Network with the LSCF. To 
use the neural network in combination with the LSCF the 
approximate positions of the poles are neglected. Instead, 

  FIGURE 8    Result of the neural network on the numerically 
calculated DPMs for the points shown in figure 5

  FIGURE 9    Results of the neural network on measured data 
taken from different structures
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only the number of poles in every DPM is used and given 
to the LSCF as an estimation for the highest requested 
order. The results of this approach are shown in Figure 10.

In addition to the frequency of the poles which is 
more precise than the output of the neural network, the 
LSCF gives the modal damping of the respective poles. 
That is needed in the following steps as an additional input.

Processing of Detected Poles for 
the Whole Dataset
After for every measured DPM the poles are detected 
automatically, like it was described in the previous section, 
there are some steps to be performed to derive the 
dynamic properties of the structure from the detected 
poles. The different steps to process the detected poles 
are shown in Figure 11. The steps are performed iteratively 
every time a new measurement is added to the dataset 
for all measurements in the dataset. This is important, 
because the approach is based on continuous learning 
about the properties of the structure. With every new 
measurement there is the chance to learn more about 
the number and frequency values of the eigenfrequencies 
as well as the range of modal damping present in the 
structure or the maximal amplitude of the DPM. The poles 
detected in every DPM are classified based on all the 

information about the structure’s dynamic properties 
available at this specific iteration of the prestudy.

In a first step all the poles from all measurements 
are collected in one big group. The poles in the group are 
sorted from lower to higher frequencies.

In a second step the poles detected in all DPM are 
grouped into subgroups representing the different eigen-
frequencies of the structure. This step depends on the 
mode density. The accuracy of this step increases with 
every added measurement until all the eigenfrequencies 
of the structure in the specific frequency range of interest 
are known. Since the prestudy is based solely on measure-
ments, there is no sharp stopping criteria indicating, that 
all eigenfrequencies are known. Instead, it is recom-
mended to check whether the number of detected eigen-
frequencies still changes after a few iterations. If it remains 
stable it can be  concluded, that all eigenfrequencies 
where detected.

The third step is performed for every DPM separately. 
While the first two steps focus on the dynamic properties 
of the whole structure, the third step focuses on the 
properties of the specific DOF and how it contributes to 
the previously derived properties of the structure. To 
answer this question, the poles present in the specific 
DPM are compared to the eigenfrequencies of the whole 
structure derived in the previous step. Based on this 
evaluation a vector with as many entries as the number 
of eigenfrequencies is created. If the specific eigenfre-
quency is not present in the DPM, the respective value 
is zero. If it is present, the value is equal to the amplitude 
of the imaginary part of the DPM. The imaginary part of 
the DPM is taken as a measure of how good the respec-
tive eigenfrequency can be detected using the respective 
DOF as a reference point. The vectors of all the DPM sum 
up to the matrix M, which is used in the following step.

	
11 1

1

m

D Dm

Im Im
M

Im Im

 
 =  
 … 



   	 (3)

Where,
D = number of DOF
m = number of Eigenfrequencies
ImDm = normed amplitude of the imaginary part of 

the DPM at DOF D and for frequency m

Suggestion of an Optimal Set of 
Reference DOF
The result of the previous step is matrix M. The rows of 
matrix M represent the DOF and the eigenfrequencies 
are represented in the columns. The values range from 
zero to one as they represent the normed amplitude of 
the imaginary part of the DPM. This value is used to 
estimate, how good the specific mode can be excited or 
measured at the specific DOF. While one represents the 
highest amplitude in the dataset and thus an optimal 
detectability, a value of zero means, that the specific mode 
cannot be detected at the specific DOF.

  FIGURE 10    Result of the combination of neural network and 
LSCF on the numerically calculated DPMs for the points 
shown in figure 5

  FIGURE 11    Flowchart processing of detected poles
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In [2] an iterative algorithm is introduced which is 
used to find the optimal reference points based on data 
generated by a numerical modal analysis. The algorithm 
is designed to handle big amounts of potential reference 
points that can occur as a result of numerical modal 
analysis. But the algorithm can be used in a similar way 
for experimental data, generated using the experimental 
prestudy that is focus of this paper.

The algorithm accepts the previously mentioned 
matrix M as an input and in addition it needs a threshold 
value which defines the minimal requested amplitude for 
a mode to count as excitable. The threshold is set auto-
matically depending on the damping present in the struc-
ture under test. The damping of the structure comes as 
an additional result of the previously conducted pole 
detection using the LSCF.

As output the algorithm gives the minimal number 
of requested reference DOF and gives a set of DOFs, 
which are optimal to use as reference DOFs. In the 
following the algorithm is split up into 7 steps.

	 1.	 In a first step, a temporary matrix (Mtemp) is 
derived from M where all values below the 
threshold are set to zero, while the values above 
are set to one.

	 2.	 For every line (DOF) of Mtemp all the values are 
summed up. The lines with a value of zero are 
erased because the corresponding DOFs do not 
excite any mode. The DOFs with the highest sum 
are then taken as potentially first reference DOFs.

	 3.	 For every potentially first reference DOF an own 
submatrix is derived, where the columns of the 
modes already detected by the first reference 
DOF are erased.

	 4.	 In every submatrix the values are summed up for 
every line and the lines with a sum of zero are 
erased again. The DOFs with the highest sum are 
added as a second reference DOF to the 
respective first reference DOF.

	 5.	 Steps 3 and 4 are repeated until there are no 
columns left in the matrix. This means that there 
are no modes present in the structure, that are 
not detected by one of the chosen 
reference points.

	 6.	 The minimal number of reference points needed 
is represented by the smallest group derived 
from the process explained above. All larger 
groups are deleted. The process results in several 
groups of reference points which are suitable to 
detect all modes present in the dataset. To find 
out, which one is the best, for every set a 
submatrix of matrix A is derived and the normed 
amplitudes for the DPM at the specific modes are 
considered. The set where the minimum of the 
normed amplitudes has the highest value is 
regarded to be the optimal set of reference DOFs 
for this iteration.

	 7.	 To find the global optimum the threshold is set to 
the previously derived minimum of the normed 
amplitudes and steps 1 to 7 are repeated until the 

minimal number of requested reference DOFs 
increases. The result of the previous iteration is 
then the optimal set of requested 
reference DOFs.

Example and Results
In the following section the results of the test based 
prestudy will be shown using the example of a torque 
support of an e-drive (see Figure 12). In the following 
section the results and the validation of the approach will 
be discussed in 3 steps.

To provide the necessary data to validate the 
approach the DPMs at 12 different DOF on the structure 
were measured using an impact hammer and an accel-
erometer. The measurements are performed in free-free 
conditions.

Figure 12 displays a 3 D model of the structure that 
was chosen as an example. The yellow dots depict the 
position of the chosen potential reference DOF at which 
the DPMs were measured. The direction was perpen-
dicular to the structure’s surface in every case. The posi-
tions are spread all over the geometry. To enable a 
comparability to and validation against the numerical 
prestudy presented in [2] the same structure was used 
under identical conditions. Furthermore, the DOF identi-
fied as the optimal reference DOF with the help of the 
numerical prestudy had to be in the set of potential refer-
ence DOF.

All the measured inertances where then evaluated 
with the approach presented in the sections above. The 
first result of this exemplary study is that for this structure 
one reference DOF is enough to excite all the modes 
between 0 Hz and 5000 Hz and the second result is, 
where this reference DOF should be  located to gain 
optimal results of the modal analysis.

  FIGURE 12    Example structure and chosen potential 
reference points
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To make this result easier to interpret the matrix 
given in the upper part of Figure 13 can be derived. The 
rows of the matrix represent the measured DOF while 
the columns represent the eigenfrequencies of the struc-
ture derived from the measurements during the prestudy. 
It is important to know that these frequencies might differ 
a little from the eigenfrequencies identified during a full 
modal analysis, because the prestudy runs on a limited 
set of DPMs instead of a full matrix of FRF. Furthermore, 
in the case of the prestudy, the DPMs are fed one by one 
to the LSCF, whereas a full DPM matrix is fed to the LSCF 
during a full modal analysis.

In the matrix in Figure 13 a green entry represents 
the information that the specific eigenfrequency can 
be detected at the respective DOF. A red entry means 
that the specific DOF is not able to detect the respective 
eigenfrequency.

The DOF identified by the prestudy as the optimal 
reference DOF is marked with a blue box in Figure 13.

As a first step of validation the DPM for different 
potential reference DOF can be visually inspected. In the 
lower part of Figure 13 the DPM of the optimal reference 
DOF suggested by the tool (blue) is compared to the 
inertance measured at a bad reference DOF (orange) 
chosen based on the information provided by the matrix 
above. Like it was predicted by the matrix there are 
several modes present in the blue curve that will probably 
be more difficult to detect in the orange curve in the step 
of parameter extraction during a modal analysis. These 
are marked in red. This is why the optimal reference DOF 

suggested by the approach is superior and is suitable to 
ensure a complete modal model.

As a second step of validation the results of the 
prestudy presented in this paper are compared to the 
results of the numerical prestudy presented in [1]. While 
the test based prestudy relies on measurements and only 
DOFs that are measured can be evaluated regarding their 
suitability as refence DOF, the numerical prestudy relies 
on a finite element model of the structure. Thus, for every 
node on the surface of the model there is a rating avail-
able regarding the suitability as a reference DOF. This 
rating is visualized as a 3D Heatmap like it is displayed in 
Figure 14 on the left. The color scaling gives an impression 
on how good the reference DOF excites the modes. While 
nodes that are not suitable to detect all modes are 
displayed in black, the optimal reference DOF is displayed 
in white.

The optimal reference DOF suggested by the numer-
ical prestudy is the point marked by a green circle in 
Figure 14. On the right of Figure 14 it can be seen that 
the reference DOF suggested by the test-based prestudy 
matches the result of the numerical prestudy.

As a third step of validation an experimental modal 
analysis is conducted using the reference DOF suggested 
by the test based prestudy. The measurements are 
conducted with the method of roving hammer and again 
the structure is measured in free-free condition. The 
extraction of modal parameters is done with the help of 
the LSCF. In parallel a numerical modal analysis of the 
structure was conducted using a FE-Model. The derived 
mode shapes of the experimental and of the numerical 
modal analysis are then compared using the modal assur-
ance Criterion (MAC) [12].

The MAC is a measure of the correlation between 
two modal shapes. It can take values from zero to one, 
with zero meaning no correlation and one meaning iden-
tical mode shapes. Usually, MAC is shown as a matrix to 
compare two sets of mode shapes. In this case the 
columns represent the mode shapes derived from the 
experimental modal analysis and the rows represent the 
mode shapes derived from the numerical modal analysis.

The MAC matrix in Figure 15 reveals a good match 
between the results of the numerical and the experi-
mental modal analysis in the frequency range of interest 
defined earlier. A perfect match would mean MAC values 
of one on the diagonal and zero everywhere else in the 

  FIGURE 13    Result of the prestudy

  FIGURE 14    Comparison between numerical [2] and test-
based prestudy
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matrix. Small deviations in frequency and mode shape 
are caused by uncertainties in material parameters or 
geometry of the numerical model. Since this evaluation 
is not focused on the quality of the numerical model but 
on the completeness of the modal model derived from 
the experimental modal analysis using the suggested 
reference DOF, the slight deviations in frequency or mode 
shape do not diminish the excellent result. The reference 
DOF suggested by the test based prestudy ensures the 
completeness of the modal model.

Summary
In this paper, modal analysis is targeted as an important 
method for evaluating structural dynamics. Although it is 
frequently used, it is still a method that is mainly used by 
experts, as it requires many decisions that can only 
be made based on experience.

These experience-based decisions are necessary 
throughout the entire process, from planning, data acqui-
sition and parameter extraction to post-processing. Often, 
wrong decisions at the beginning of the process can 
be recognized, if at all, only at the very end of the process. 
The incompleteness of a modal model is one example of 
the effect of a wrong decision in the initial planning step 
of the modal analysis. Incompleteness of the modal model 
means that not all modes present in the structure are 
captured in a particular frequency range and may happen 
due to a wrong selection of reference DOF(s). As the 
modal model becomes available only in the final step of 
the process, any errors can only be detected at the 
earliest in this last step. Moreover, if there is no reference 
to compare with, it is difficult to notice that one or more 
modes are missing, which means the error may not even 
be noticed at all.

This paper focuses on this decision on the selection 
of the optimal reference DOF, which must be made in 
the planning step. Choosing the wrong or too few refer-
ence DOFs can lead to an incomplete modal model. 
Choosing too many reference DOFs leads to a very high 
effort in instrumentation, measurement, and analysis.

The approach presented in this paper results in a 
proposal for the optimal set of reference DOFs, making 
the planning step of modal analysis simpler and more 
reliable. In this case, reliability means that the modal 
model derived from the measurements is complete within 
the frequency range of interest.

The approach presented consists of a small test 
based prestudy using the structure under test. No addi-
tional numerical model neither a CAD model is necessary. 
The approach is automated with the help of a neural 
network and works without user interaction. The only 
thing the user is requested to do is to measure some 
DPMs at the location of potential references DOFs. The 
evaluation of the potential reference DOF by the approach 
runs in parallel to the measurements and gives immediate 
feedback to the user.

The approach is introduced using data from an easy-
to-understand numerical example. This has the advan-
tage, that the numerical content of the structure is known 
beforehand and thus it is easy to evaluate the interim 
results of the approach.

Finally, the approach is validated using measurement 
data from a real use case. The transfer from the simple 
numerical example to the more complex, real structure of 
a torque support makes it possible to demonstrate the 
advantages of the approach. The test based prestudy 
suggests solely based on 12 DPMs at different potential 
reference DOFs, that one reference DOF is enough to detect 
all modes in the frequency range of interest. The suggestion 
is proven by means of an experimental modal analysis 
conducted using the respective DOF as a reference DOF.

Thus, another important step in context of experi-
mental modal analysis towards reliable results, that are 
independent from the user’s individual experience, is done.
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